Receptive field structure of flow detectors for heading perception

نویسندگان

  • Jaap A. Beintema
  • Albert V. van den Berg
  • Markus Lappe
چکیده

Observer translation relative to the world creates image flow that expands from the observer's direction of translation (heading) from which the observer can recover heading direction. Yet, the image flow is often more complex, depending on rotation of the eye, scene layout and translation velocity. A number of models [1-4] have been proposed on how the human visual system extracts heading from flow in a neurophysiologic ally plausible way. These models represent heading by a set of neurons that respond to large image flow patterns and receive input from motion sensed at different image locations. We analysed these models to determine the exact receptive field of these heading detectors. We find most models predict that, contrary to widespread believe, the contribut ing motion sensors have a preferred motion directed circularly rather than radially around the detector's preferred heading. Moreover, the results suggest to look for more refined structure within the circular flow, such as bi-circularity or local motion-opponency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emulating the visual receptive-field properties of MST neurons with a template model of heading estimation.

We have proposed previously a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field thro...

متن کامل

?. Circular Receptive Field Structures for Flow Analysis and Heading Detection

Recent years have brought forward different models on how the brain might encode heading from optic flow. Neurons in these models can encode heading for a variety of self-motion conditions, while responding to optic flow stimuli similarly as found in electrophysiological studies. Yet, little attention has been given to the receptive field structure of neurons that integrate local motion signals...

متن کامل

Visual navigation with a neural network

A simple linear neural network modelled on areas MT and MST of primate visual cortex can determine the direction of self-motion of an observer by using the optical flow field induced by observer translation relative to a rigid planar environment. The model's input layer consists of a set of motion detectors covering a 20 x 20 portion of the visual field with a subset of eight detectors selectiv...

متن کامل

A Unified Model of Heading and Path Perception in Primate MSTd

Self-motion, steering, and obstacle avoidance during navigation in the real world require humans to travel along curved paths. Many perceptual models have been proposed that focus on heading, which specifies the direction of travel along straight paths, but not on path curvature, which humans accurately perceive and is critical to everyday locomotion. In primates, including humans, dorsal media...

متن کامل

Centric-minded templates for self-motion perception

We propose a two-layer neuromorphic architecture by which motion field pattern, generated during locomotion, are processed by template detectors specialized for gaze-directed self-motion (expansion and rotation). The templates provide a gaze-centered computation for analyzing motion field in terms of how it is related to the fixation point (i.e., the fovea). The analysis is performed by relatin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001